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Abstract

Most saliency estimation methods aim to explicitly model

low-level conspicuity cues such as edges or blobs and may

additionally incorporate top-down cues using face or text

detection. Data-driven methods for training saliency mod-

els using eye-fixation data are increasingly popular, par-

ticularly with the introduction of large-scale datasets and

deep architectures. However, current methods in this lat-

ter paradigm use loss functions designed for classification

or regression tasks whereas saliency estimation is evalu-

ated on topographical maps. In this work, we introduce

a new saliency map model which formulates a map as a

generalized Bernoulli distribution. We then train a deep ar-

chitecture to predict such maps using novel loss functions

which pair the softmax activation function with measures

designed to compute distances between probability distri-

butions. We show in extensive experiments the effective-

ness of such loss functions over standard ones on four pub-

lic benchmark datasets, and demonstrate improved perfor-

mance over state-of-the-art saliency methods.

1. Introduction

This work is concerned with visual attention prediction,

specifically, predicting a topographical visual saliency map

when given an input image. Visual attention has been tra-

ditionally used in computer vision as a pre-processing step

in order to focus subsequent processing on regions of inter-

est in images, an ever-more important step as vision mod-

els and datasets increase in size. Saliency map prediction

has found useful applications in tasks such as automatic im-

age cropping [39], content aware image resizing [1], im-

age thumb-nailing [29], object recognition [7], and fine-

grained scene, and human action classification [36]. Tradi-

tional saliency models, such as the seminal work of Itti et al.

[14], have focused on designing mechanisms to explicitly

model biological systems. Another popular attention mod-

∗EV is now at the German Aerospace Center.

Figure 1. Sample image (left) with ground-truth saliency map

(middle) and map predicted by our PDP approach (right).

elling paradigm involves using data-driven approaches to

learn patch-level classifiers which give a local image patch

a “saliency score” [19, 18], using eye-fixation data to derive

training labels. A recent trend has emerged which intersects

with both of these paradigms: to use hierarchical models to

extract saliency maps, with model weights being learned in

a supervised manner. In particular, end-to-end or “deep” ar-

chitectures, which have been successfully used in semantic

labelling tasks such as categorization or object localization,

have been re-purposed as attention models [23, 33]. This

trend has been facilitated by the introduction of large visual

attention datasets created using novel eye movement collec-

tion paradigms [16, 43]. However, while these deep meth-

ods have focused on designing appropriate architectures for

extracting saliency maps, they continue to use loss func-

tions adapted for semantic tasks, such as classification or

regression losses.

In this work, we propose a novel formulation of saliency

map prediction as a probability distribution prediction task.

The map is formulated as a generalized Bernoulli distribu-

tion, and several novel loss functions are proposed based on

probability distance measures. We show that training a deep

architecture with such loss functions results in superior per-

formance with respect to standard regression loss functions

such as the Euclidean and Huber loss. We also perform a

comparison among our proposed loss functions and show

that our loss function, based on the Bhattacharyya distance

for multinomial distributions, gives top performance.

Our contributions are therefore the following:

• a novel formulation which represents a saliency map

as a generalized Bernoulli distribution;

15753



• a set of novel loss functions which are paired with the

softmax function and which penalize the distance be-

tween predicted and target distributions;

• a fully-convolutional architecture which can generate a

saliency map for a large image in 200ms using modern

GPUs.

Our extensive experimental validation on four datasets

demonstrates the effectiveness of our approach when com-

pared to other loss functions and other state-of-the-art ap-

proaches to saliency map generation. Figure 1 illustrates its

prediction performance.

The remainder of the paper is organized as follows: in

section 2 we discuss related work. Section 3 describes our

saliency modelling and estimation approach. We report and

discuss evaluation results in section 4 and conclude in sec-

tion 5.

2. Related work

Existing approaches can be organized into one of four

broad categories based on whether they involve a shallow or

deep architecture, and an unsupervised or supervised learn-

ing paradigm. We will discuss each of these broad cate-

gories in turn. For an excellent survey of saliency estima-

tion methods, please refer to [2].

Unsupervised shallow methods Most early work on

saliency builds on psychological and psychophysical mod-

els of attention as studied in humans. Koch and Ullman

[20] were among the first to use feature integration theory

[40] to propose a set of individual topographical maps of

elementary cues such as color, contrast, and motion, and

combine them to produce a global topographical map of

saliency. Their model is implemented using a simple neu-

ral circuitry with winner-take-all and inhibition-of-return

mechanisms. It is further investigated in [13] by combin-

ing features maps over a wider set of modalities (42 such

maps) and testing on real-world images. Later approaches

largely explore the same idea of complementary feature en-

sembles [14, 41, 26, 24, 45, 32] and often add to it additional

center-surround cues [14, 31, 45].

Complementing the biologically motivated approaches,

a number of methods adopt an information-theoretic jus-

tification for attentional selection, e.g. by self-informa-

tion [46], information maximization [4], or Bayesian sur-

prise [12]. High computational efficiency is achieved by

spectrum-based methods [10, 35]. All these approaches use

bottom-up cues, are shallow (one or few layers) and involve

no or minimalistic learning of thresholds/heuristics.

Supervised shallow methods This category includes learn-

ing based approaches involving models such as markov

chains [8], support vector machines [19, 18] and ad-

aboost classifiers [6]. [8] substitutes the idea of centre-

surroundedness and normalization with learnable graph

weights. [6], [18], and [48] enrich learning by incorporat-

ing top-down semantic cues in the form of detection maps

for faces, persons, cars, and the horizon.

Unsupervised hierarchical methods In the context of

saliency prediction, the first attempts to employ deeper ar-

chitectures are mostly unsupervised. [37] learn higher-level

concepts from fixated image patches using a 3-layer net-

work of sparse coding units. [42] perform a large-scale

search for optimal network architectures of up to three lay-

ers, but the network weights are not learned.

DeepGaze [23] employs an existing network archi-

tecture, the 5-layer deep AlexNet [21] trained for object

classification on ImageNet, to demonstrate that off-the-

shelf CNN features can significantly outperform non-deep

and “shallower” models, even if not trained explicitly on

the task of saliency prediction. Learning, in their case, has

meant finding the optimal linear combination of features

from the different network layers.

Supervised hierarchical methods The publication of

large-scale attention datasets, such as SALICON [16] and

TurkerGaze/iSUN [43], has enabled training deep architec-

tures specifically for the task of saliency prediction. Our

work lies in this category and involves training an end-to-

end deep model with a novel loss function.

SALICON [16] was collected with a new data-collection

paradigm, in which observers were shown foveated im-

ages and were asked to move the mouse cursor around to

simulate the high-resolution fovea. This novel paradigm

was used to annotate 20K images from the MSCOCO

dataset [25]. Relying on this new large-scale dataset, the

authors of [33] trained a network end-to-end for saliency

prediction. Their network, titled JuntingNet, consists of five

convolutional and two fully-connected layers, and the pa-

rameters of the network are learned by minimizing the Eu-

clidean loss function defined on the ground-truth saliency

maps. This method reports state-of-the-art results on the

LSUN 2015 saliency prediction challenge [47].

Another end-to-end approach that formulates saliency

prediction as regression is that of [22]. DeepFix builds upon

the very deep VGGNet [38], uses convolutional layers with

large and multi-size receptive fields to capture complemen-

tary image context, and introduces a location-biased convo-

lutional (LBC) layer to model the center-bias.

Finally, one of the most recent works in this paradigm

[11] proposes the use of deep neural networks to bridge

the semantic gap in saliency prediction via a two-pronged

strategy. The first is the use of the KL-divergence as a loss

function motivated by the fact that it is a standard metric for

evaluation of saliency methods. The second is the aggrega-

tion of response maps from both coarse and fine resolutions.
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In this work, we argue for a well-motivated probabilistic

modelling of the saliency maps and hence study the use of

KL-divergence, among other probability distance measures,

as loss functions. As we discuss in section 4, we observe

that our Bhattacharyya distance-based loss function consis-

tently outperforms the KL-divergence-based one across 4

standard saliency metrics.

3. Saliency maps as probability distributions

Saliency estimation methods have typically sought to

model local saliency based on conspicuity cues such as lo-

cal edges or blob-like structures, or on the scores of binary

saliency classifiers trained on fixated and non-fixated image

patches. More recently, methods have sought to directly

predict maps using pixel-wise regression.

However, visual attention is a fundamentally stochastic

process due to it being a perceptual and therefore subjective

phenomenon. In an analysis of 300 images viewed by 39

observers, the authors of [17] find that the fixations for a

set of n observers match those from a different set of n ob-

servers with an AUC score that increases with the increase

in the value of n. The lower bound of human performance

is found to be 85% AUC. Therefore there is high consis-

tency across observers. At the limit of n → ∞ this AUC

score is 92%, which can therefore be considered a realistic

upper-bound for saliency estimation performance.

Ground-truth saliency maps are constructed from the ag-

gregated fixations of multiple observers, ignoring any tem-

poral fixation information. Areas with a high fixation den-

sity are interpreted as receiving more attention. As attention

is thought to be given to a localized region rather than an

exact pixel, two-dimensional Gaussian filtering is typically

applied to a binary fixation map to construct a smooth “at-

tentional landscape” [44] (c.f . Figure 1, middle image for an

example). Our goal is to predict this attentional landscape,

or saliency map. Given the stochastic nature of the fixations

upon which the maps are based, and the fact that the maps

are based on aggregated fixations without temporal infor-

mation, we propose to model a saliency map as a probabil-

ity distribution over pixels, where each value corresponds

to the probability of that pixel being fixated upon. That is,

we represent a saliency map as a generalized Bernoulli dis-

tribution ppp = (p1, · · · , pi, · · · , pN ), where ppp is the proba-

bility distribution over a set of pixels forming an image, pi
is the probability of pixel i being fixated upon and N is the

number of image pixels. While this formulation is some-

what simplistic, it will allow for novel loss functions highly

amenable to training deep models with back-propagation.

In the sequel, we first describe these loss functions and then

describe our model implementation.

3.1. Learning to predict the probability of fixation

We adopt an end-to-end learning framework in which a

fully-convolutional network is trained on pairs of images

and ground-truth saliency maps ggg modeled as distributions.

The network outputs predicted distributions ppp1. Both proba-

bility distributions, ggg and ppp, are computed using the softmax

activation function:

pi =
ex

p

i

∑

j e
x
p

j

, gi =
ex

g

i

∑

j e
x
g

j

, (1)

where xxx = (x1, · · · , xi, · · · , xN ) is the set of un-

normalized saliency response values for either the ground-

truth map (xgxgxg) or the predicted map (xpxpxp). To compute xgxgxg ,

a binary fixation map bbb is first generated from ground-truth

eye-fixations. The binary map bbb is then convolved with a

Gaussian kernel as described earlier in this section to pro-

duce yyy. The smoothed map y is then normalized as

x
g
i =

yi −min[y]

max[y]−min[y]
. (2)

We generate xpxpxp directly from the last response map of

our deep network, whose architecture is described in the

next section.

We propose to combine the softmax function with dis-

tance measures appropriate for probability distributions in

order to construct objective functions to be used for train-

ing the network. This combination is inspired by the pop-

ular and effective softmax/cross-entropy loss pairing which

is often used to train models for multinomial logistic regres-

sion.

In our case, we propose to combine the softmax func-

tions with the χ2, total-variation, cosine and Bhattacharyya

distance measures, as listed in Table 1. To our knowledge,

these pairings have not previously been used to train a net-

work for probability distribution prediction. We also inves-

tigate the use of the KL divergence measure, the minimiza-

tion of which is equivalent to cross-entropy minimization,

and which is used extensively to learn regression models in

deep networks. The partial derivatives of these loss func-

tions with respect to x
p
i are all of the form api − b(1 − pi)

due to the pairing with the softmax function, whose partial

derivative with respect to x
p
i is

∂pj

∂x
p
i

=

{

pi(1− pi), if j = i

−pipj , otherwise.
(3)

We make comparisons with two standard regression

losses, the Euclidean and Huber losses, defined as:

Leuc(p, g) =
∑

j

a2j , (4)

1We slightly abuse notation and from now on use ppp to refer specifically

to the predicted distribution.
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Probability distances L(p, g) ∂L(p,g)
∂x

p

i

χ2 divergence
∑

j

(gj)
2

pj
− 1 pi

∑

j 6=i

g2

j

pj
− g2

i

pi
(1− pi)

Total Variation distance 1
2

∑

j |gj − pj | 1
2

[

pi
∑

j 6=i

gj−pj

|gj−pj |
pj − pi

gi−pi

|gi−pi|
(1− pi)

]

Cosine distance 1−
∑

j
pjgj√∑

j
p2

j

√∑
j
g2

j

1
C

[

pi
∑

j 6=i pj(gj − pi

√∑
i
g2

i√∑
i
p2

i

R)− pi(gi − piR)(1− pi)

]

;

where R =
∑

i
pigi
C

and C =
√

∑

i p
2
i

√

∑

i g
2
i .

Bhattacharyya distance − ln
∑

j(pjgj)
0.5 −1

2
∑

j
(pjgj)0.5

[

pi
∑

j 6=i(pjgj)
0.5 − (pigi)

0.5(1− pi)
]

KL divergence
∑

j gj log
gj
pj

pi
∑

j 6=i gj − gi(1− pi)

Table 1. Probability distance measures and their derivatives used for stochastic gradient descent with back-propagation. We propose the

use of the first 4 meausres as loss functions. We also investigate KL-divergence, which is widely used to train recognition models in the

form of the closely-related cross-entropy loss.

and

Lhub(p, g) =
∑

j

{

1
2a

2
j , for |aj | ≤ 1

|aj | − 1
2 , otherwise;

(5)

where aj = |pj − gj |.

3.2. Training the prediction model

The network architecture and saliency map extraction

pipeline is shown in Figure 2. We use the convolutional

layers of the VGGNet model [38], which were trained on

ImageNet images for the task of classification, as the early

layers of our model. This convolution sub-network has been

shown to provide good local feature maps for a variety of

different tasks including object localization [34] and seman-

tic segmentation [27]. As saliency datasets tend to be much

too small to train such large networks from random initial-

izations (the largest dataset has 15000 images, compared to

1M for ImageNet), it is essential to initialize with a pre-

trained network. We then progressively decrease the num-

ber of feature maps using additional convolutional layers,

until a final down-sampled saliency map is produced. We

add three new layers, rather than just one, to predict the final

map in order to improve both discriminability and general-

izability [38]. We experimented with different filter sizes

besides 7× 7 (e.g. 9× 9, 5× 5, 3× 3) and found no signifi-

cant performance difference. We explicitly avoided fully-

connected layers in order to obtain a memory and time-

efficient model. The three new layers are initialised with a

uniform Gaussian distribution of sigma = 0.01. Because the

response maps undergo several max-pooling operations, the

predicted saliency map ppp is lower-resolution than the input

image. The ground-truth map ggg is therefore downsampled

during training to match the dimensions of ppp. Conversely,

during inference the predicted map is upsampled with a bi-

linear filter to match the dimensions of the input image (see

Figure 2), and the softmax function is applied for normal-

ization to a probability distribution.

The final fully-convolutional network comprises 16 con-

volutional layers, each of which is followed by a ReLu

layer. Due to the fully-convolutional architecture, the size is

quite small for a deep model, with only 15,530,481 weights

(60MB of disk space).

Note that while several deep saliency models explicitly

include a center bias (see e.g. [22]), we hypothesized that

the model could learn the center-bias implicitly, given that

it is largely an artifact of a composition bias in which pho-

tographers tend to place highly salient objects in the im-

age center [3]. We tested this by adding Gaussian blurring

and a center-bias to our maps, with optimized parameters,

using the post-processing code of the MIT saliency bench-

mark [5]. We found no consistent improvement across dif-

ferent metrics using this post-processing which indicates

that a great deal of center-bias and Gaussian blurring is al-

ready accounted for in the model.

The objective function is optimized using stochastic gra-

dient descent, with a learning rate of 1 times the global

learning rate for newly-introduced layers and 0.1 times the

global learning rate for those layers which have been pre-

trained on ImageNet. To reduce training time, the first 4

convolutional layers were fixed and thus retained their pre-

trained values. We used a momentum of 0.9 and a weight

decay of 0.0005. The model is implemented in Caffe [15].

We trained the network using an Nvidia K40 GPU. Training

on the SALICON training set took 30 hours.

Saliency datasets tend to have semantic biases and other

idiosyncrasies related to the complexity of collecting eye-

tracking information (such as the viewing distance to the

screen and the eye-tracker calibration). For this reason, we

perform dataset-specific fine-tuning, which improves per-

formance. Fine-tuning is particularly essential in our case

because the SALICON dataset collected mouse clicks in

lieu of actual eye-fixations which, while highly correlated in

general, are still an approximation to true human eye move-

ments. As shown on a subset of the SALICON images,

image-level conformance between SALICON fixations and

5756



Input image 512 feature maps 32 feature maps 8 feature maps 1 feature map Final map

VGG 7x7 convolutions 7x7 convolutions 7x7 convolutions bilinear filter + softmax

Figure 2. Our proposed saliency map extraction pipeline: the input image is introduced into a convNet with an identical architecture to

the convolutional-layer portion of VGGNet. Additional convolutional layers are then applied, resulting in a single response map which is

upsampled and softmax-normalized at testing time to produce a final saliency map.

human eye fixations can be as low as shuffled AUC (sAUC)

of 0.655 and as high as sAUC of 0.965 [16]. Therefore

it is beneficial to fine-tune the network for each dataset of

interest. A detailed description of each of these datasets fol-

lows.

4. Experimental evaluation

This section describes the experimental datasets used for

training and evaluating the saliency prediction models fol-

lowed by a discussion on the quantitative and qualitative

aspects of the results.

4.1. Datasets

SALICON This is one of the largest saliency datasets

available in the public domain [16]. It consists of eye-

fixation information for 20000 images from the MS COCO

dataset [25]. These images contain diverse indoor and out-

door scenes and display a range of scene clutter. 10000 im-

ages are marked for training, 5000 for validation and 5000

for testing. The fixation data for the test set is held-out and

performance on it must be evaluated on a remote server. The

peculiarity of SALICON lies in its mouse-based paradigm

for fixation gathering. The attentional focus (foveation) in

the human attention mechanism that defines saliency fixa-

tions is simulated using mouse-movements over a blurred

image. The approximate foveal image region around the

mouse position is selectively un-blurred as the user ex-

plores the image scene using the mouse cursor. As eval-

uated on a subset of the dataset, this mouse-click data is in

general highly consistent with human eye fixations (at 0.89

sAUC). Therefore, while the mouse fixation data is an ap-

proximation to the human baseline, it is useful in adapting

the weights of a deep network originally trained for a dis-

tinct task to the new task of saliency prediction. We use

this dataset for our comparative study of the selected prob-

ability distances as loss functions during learning. We have

also submitted our best performing model to the SALICON

challenge server [47].

MIT-1003 This dataset was introduced as part of the train-

ing and testing paradigm in [18]. The eye tracking data is

collected using a head-mounted eye tracking device for 15

different viewers. The 1003 images of this dataset cover

natural indoor and outdoor scenes. For our experiments, we

use the first 900 images for training and the remaining 103

for validation, similar to the paradigm of [22].

MIT-300 This benchmark consists of held-out eye track-

ing data for 300 images collected across 39 different view-

ers [17]. The data collection paradigm for this dataset is

very similar to that used in MIT-1003. Hence, as suggested

on the online benchmark, we use MIT-1003 as the training

data to fine-tune for MIT-300.

OSIE This benchmark contains a set of 700 images. These

include natural indoor and outdoor scenes, as well as high

aesthetic-quality pictures taken from Flickr and Google. In

order to gain from top-down understanding, this dataset pro-

vides object and semantic level information (which we do

not use) along with the eye-tracking data. Following the

work of [28], we randomly divide the set into 500 training

and 200 test images and average the results over a 10-fold

cross-validation.

VOCA-2012 With the exception of SALICON, the previ-

ous datasets are relatively small, with at most 1003 images.

Evaluations on large-scale datasets of real fixations would

be more informative. However, to our knowledge, there is

no truly large-scale dataset of free-viewing fixations. In-

stead, we evaluate on VOCA-2012, an action recognition

dataset which has been augmented with task-dependent eye-

fixation data [30]. Predicting such fixations is a different

task to predicting free-viewing fixations, the task for which

our model is designed. We therefore evaluate on this dataset

to determine whether our model generalizes to this task.

Generating ground-truth maps To create ground-truth

saliency maps from fixation data, we use the saliency map

generation parameters established by the authors of each

dataset. For SALICON, this means convolving the binary

fixation maps with a Gaussian kernel of width 153 and stan-

dard deviation 19. For OSIE, this means applying a Gaus-
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Distance AUC-Judd sAUC CC NSS

Euclidean 0.865 0.761 0.667 2.108

Huber 0.867 0.766 0.684 2.177

KL divergence 0.876 0.780 0.724 2.371

χ2 divergence 0.872 0.774 0.711 2.337

Total Variation distance 0.869 0.766 0.716 2.385

Cosine distance 0.871 0.778 0.717 2.363

Bhattacharyya distance 0.880 0.783 0.740 2.419

Table 2. SALICON validation set: Performance comparison of

models trained using different loss functions.

sian kernel of width of 168 and standard deviation of 24

(all in units of pixels). The authors of MIT-1003 and MIT-

300 provide ground-truth saliency maps which, according

to their technical report [17], are computed with a Gaussian

kernel whose size corresponds to a cutoff frequency of 8

cycles per image.

4.2. Results

We first compare results for different loss functions and

then compare to the state-of-the-art methods. For each

dataset, we follow the established evaluation protocol and

report results on standard saliency metrics, including sAUC,

AUC-Judd, AUC-Borji, Correlation Coefficient (CC), Nor-

malized Scanpath Saliency (NSS), Similarity (SIM), and

Earth Mover’s Distance (EMD).

Loss functions We compare the performance of models

trained using our proposed loss functions to those trained

on standard loss functions based on the Euclidean distance,

Huber distance, and KL-divergence measure. These models

are all trained on the SALICON training set of 10K images,

and validated on the SALICON validation set of 5K im-

ages. Table 2 presents the best validation-set performance

for each loss, as measured by the overall performance with

respect to 4 metrics. These results show that: (i) the losses

based on distance measures appropriate for probability dis-

tributions perform better than standard regression losses;

(ii) the KL-divergence compares favorably with other meth-

ods; and (iii) the Bhattacharyya distance-based loss out-

performs all other losses. These two last losses share the

property that they are robust to outliers as they suppress

large differences between probabilities (logarithmically in

the case of the KL divergence and geometrically in the case

of the Bhattacharyya distance). This robustness is partic-

ularly important as the ground-truth saliency maps are de-

rived from eye-fixations which have a natural variation due

to the subjectivity of visual attention, and which may also

contain stray fixations and other noise. Figure 3 shows the

evolution of the saliency metrics on the SALICON valida-

tion set as the training progresses. The Bhattacharyya dis-

tance is consistently the best-performing.
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Figure 3. Evolution of different metrics on the evaluation set of

SALICON as the number of training iterations increases.

Method CC sAUC AUC-Borji

Itti[14] 0.205 0.610 0.660

GBVS[8] 0.421 0.630 0.782

BMS[45] 0.427 0.694 0.770

WHU IIP* 0.457 0.606 0.776

Xidian* 0.481 0.681 0.800

Rare12 Improved* 0.511 0.664 0.805

UPC[33] 0.596 0.670 0.829

PDP 0.765 0.781 0.882

Table 3. SALICON Challenge: comparison between different

methods. Methods marked by * have no associated publication

to-date.

Comparison to the state of the art We compare the per-

formance of our proposed model, using the Bhattacharyya

distance, with the state-of-the-art methods for four standard

saliency benchmarks as follows.

SALICON challenge: The saliency estimation chal-

lenge [47] consists in predicting saliency maps for 5000

images held out from the SALICON dataset. Table 3 shows

results for state-of-the-art methods and our approach, which

we call PDP for probability distribution prediction. We out-

perform all published results, to our knowledge, on this

dataset across all three metrics.

MIT-300: MIT-1003 images serve as the training set for

fine-tuning to this benchmark. The results are compared

in Table 4. We perform comparably to the state-of-the-art

methods. Note that DeepFix [22] incorporates external cues

such as center and horizon biases in its models. We be-

lieve that including such cues may also improve our model.

In addition, they use a larger architecture, but train with a

regression loss. Therefore our approach may complement

theirs. Fine-tuning on MIT-1003 could only be performed

using a batch size of 1 image due to the large variations

in size and aspect ratio of the images. We observed that

a much-reduced momentum of 0.70 improved stability and
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Method AUC-Judd SIM EMD AUC-Borji sAUC CC NSS

eDN[42] 0.82 0.41 4.56 0.81 0.62 0.45 1.14

BMS[45] 0.83 0.51 3.35 0.82 0.65 0.55 1.41

SALICON[11] 0.87 0.60 2.62 0.85 0.74 0.74 2.12

DeepFix[22] 0.87 0.67 2.04 0.80 0.71 0.78 2.26

PDP 0.85 0.60 2.58 0.80 0.73 0.70 2.05

Table 4. MIT-300: comparison with the state of the art.

Method sAUC

Itti[14] 0.658

SUN[46] 0.735

Signature[9] 0.749

GBVS[8] 0.706

LCQS-baseline[28] 0.765

PDP 0.797

Table 5. OSIE: The performance metric of shuffled AUC (sAUC)

is averaged over 10-fold cross validation. (Baseline results are

taken from [28].)

allowed for an effective learning of the model with this con-

straint.

OSIE benchmark: The performance comparison on this

dataset is done using 10-fold cross validation by randomly

dividing the dataset into 500 training and 200 validation im-

ages. Table 5 shows that PDP achieves the highest sAUC

score. This dataset contains a wide variety of image content

and aesthetic properties. Nonetheless, this small set of 500

images was sufficient to successfully adapt our model.

VOCA-2012 (Generalization to task-dependent fixation

prediction): We ran experiments on the VOCA-2012

dataset using the same experimental paradigm as in [30].

We used our final SALICON-trained model to predict maps

for test images both before and after fine-tuning the model

on training images from VOCA-2012. The results summa-

rized in Table 6 show that our method, both with and with-

out finetuning, outperforms the state-of-the-art [30]. This

suggests that the task-dependent fixations for this action

recognition dataset are highly consistent with free-viewing

fixations.

4.3. Discussion

Our probabilistic perspective to saliency estimation is in-

tuitive in two ways. First, attention is competitive as we

look at certain regions in the image at the expense of oth-

ers. Hence, the fixation map normalised over the total visual

stimulus can be understood as a spatial probability distribu-

tion. Secondly, a probabilistic framework allows the model

to account for the noise across subjects and over the data

collection paradigm.

To provide qualitative insight, some randomly-chosen

predicted maps are shown in Figure 4. Our method con-

sistently gives high fixation probabilities to areas of high

Method KL AUC

HOG detector* [30] 8.54 0.736

Judd et al.* [18] 11.00 0.715

Itti & Koch [13] 16.53 0.533

central bias [30] 9.59 0.780

human [30] 6.14 0.922

PDP(without finetuning) 7.92 0.845

PDP*(with finetuning) 8.23 0.875

Table 6. VOCA: Performance comparison on KL-divergence and

AUC measures. Note that the best performance is achieved by

using the fixations of one human observer to predict those of

the remaining observers. The results in bold indicate the best-

performing methods that do not require human intervention at test-

ing time. (* denotes the methods that have been trained on this

particular dataset.)

Image GT BMS SALICON PDP

Figure 4. Comparison of BMS, SALICON, and our proposed PDP

method for randomly-sampled images from MIT-1003. GT refers

to the ground-truth saliency maps. Note that, to ensure a fair com-

parison, the PDP results shown here were obtained from a network

that was trained only on SALICON images, with no fine-tuning to

this dataset.

center-surround contrast, and also to high-level cues such

as bodies, faces and, to a lesser extent, text. The higher em-
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phasis on bodies and faces as compared to text is likely due

to the large number of images containing people and faces

in the SALICON dataset.

Figure 5 shows saliency map predictions for SALICON

training images which were obtained on the forward pass

after a given number of training images had been used to

train the model. One can see that center-surround contrast

cues are learned very quickly, after having seen fewer than

50 images. Faces (both of animate and non-animate ob-

jects) are also learned quickly, having seen fewer than 100

images. The saliency of text also emerges fairly rapidly.

However, the cue is not as strongly identified, likely due to

the relatively smaller amount of training data involving text.

# of

samples
Image GT Prediction

< 50

< 50

< 100

< 100

< 400

< 400

Figure 5. Our method quickly learns that regions of high center-

surround contrast, and faces and heads, are salient.

5. Conclusion

We introduce a novel saliency formulation and model for

predicting saliency maps given input images. We train a

deep network using an objective function which penalizes

the distance between target and predicted maps in the form

of probability distributions. Experiments on four datasets

demonstrate the superior performance of our method with

respect to other loss functions and other state-of-the-art

saliency estimation methods. They also illustrate the ben-

efit of using suitable learning criteria adapted to this task.
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