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Abstract. Algorithms using “bag of features”-style video representa-
tions currently achieve state-of-the-art performance on action recogni-
tion tasks, such as the challenging Hollywood2 benchmark [1,2,3]. These
algorithms are based on local spatiotemporal descriptors that can be ex-
tracted either sparsely (at interest points) or densely (on regular grids),
with dense sampling typically leading to the best performance [1]. Here,
we investigate the benefit of space-variant processing of inputs, inspired
by attentional mechanisms in the human visual system. We employ
saliency-mapping algorithms to find informative regions and descriptors
corresponding to these regions are either used exclusively, or are given
greater representational weight (additional codebook vectors). This ap-
proach is evaluated with three state-of-the-art action recognition algo-
rithms [1,2,3], and using several saliency algorithms. We also use saliency
maps derived from human eye movements to probe the limits of the ap-
proach. Saliency-based pruning allows up to 70% of descriptors to be dis-
carded, while maintaining high performance on Hollywood2.
Meanwhile, pruning of 20-50% (depending on model) can even improve
recognition. Further improvements can be obtained by combining repre-
sentations learned separately on salience-pruned and unpruned descrip-
tor sets. Not surprisingly, using the human eye movement data gives the
best mean Average Precision (mAP; 61.9%), providing an upper bound
on what is possible with a high-quality saliency map. Even without such
external data, the Dense Trajectories model [2] enhanced by automated
saliency-based descriptor sampling achieves the best mAP (60.0%) re-
ported on Hollywood2 to date.

Keywords: action recognition, saliency maps, eye movements, bag of
features, descriptor pruning.

1 Introduction

Action recognition performance critically depends on the choice of video rep-
resentation. Bag of Features (BoF) video representations [4] view each image
sequence as a collection of space-time descriptors extracted at certain locations
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in the video. These descriptors capture spatial appearance and motion proper-
ties, and are usually sampled either densely over the entire scene or at space-time
interest points. Despite the initial success of well-known interest point detectors,
such as the Harris3D corner detector [5], the Cuboid [6], or the Hessian, the cur-
rent trend is towards dense sampling [1,2,3]. Indeed, compared to the typically
small number of stable interest points, dense sampling offers a richer descrip-
tion of the scene and also captures contextual information from which discrim-
inative methods (operating on these representations) greatly benefit. However,
when processing the entire scene everywhere in detail, serious challenges must be
faced: a huge amount of — possibly irrelevant and distracting — data needs be
processed often in real-time and with restricted computing resources. This may
turn such brute-force dense sampling approaches computationally intractable.

As a way to control the combinatorial explosion inherent in an in-depth pro-
cessing of the visual environment, the human visual system has evolved highly
efficient mechanisms that restrict the visual processing to behaviorally relevant
scene locations only. Such space-variant processing involves a fast coarse stage,
in which potentially important, salient scene areas are identified; the visual in-
formation of only these regions is then processed exhaustively. The prediction of
visually salient areas, stored in topographical saliency maps, has a long history in
the vision sciences (e.g. [7,8,9]). Saliency-based approaches have been successfully
applied to various computer vision tasks, too, such as image compression [10],
quality assessment, and object recognition [11,12,13]. In these studies, saliency
maps are used to emphasize task-relevant regions by filtering out irrelevant parts
of the image.

In this paper, we investigate the potential of such space-variant saliency-based
processing for the task of action recognition. We propose to prune the set of
densely extracted descriptors based on a saliency mask of the underlying video.
We consider several different saliency models (see Fig. 1) that range in complex-
ity from simple, single-parameter ones, such as a central mask, to more complex,
biologically more plausible ones. The optimal predictor of visual saliency, how-
ever, is still based on data from human viewers. Hence, in order to build a ground
truth “empirical” saliency measure, we collected eye movements on the training
and test video samples of the Hollywood2 benchmark [14].

We demonstrate the advantages of an attentional selection stage for three
competitive action recognition algorithms that employ either hand-designed de-
scriptors [1,2] or features learned in an unsupervised manner [3]. Several in-
teresting findings that are remarkably similar for all three algorithms emerge
from this analysis. First, we show that action recognition performance can be
maintained with as little as 30% of the densely extracted descriptors selected at
random. Second, we find that a more modest pruning of the descriptors based
on visual saliency improves recognition performance, even beyond the currently
best published results. On the professionally-edited videos of the challenging
Hollywood2 benchmark, a simple central mask proves to be highly beneficial:
with the Dense Trajectories model [2] and a central mask, we obtain a mean
average precision (mAP) of 60.0% (vs. the best previously reported mAP of
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58.3% [2]). Conversely, we find that masks including only peripheral information
reduce recognition performance.

To explore the limits of saliency-based masking, we measured the eye move-
ments of human observers watching the benchmark videos, and used this data to
produce an “empirical” saliency map. As expected, the resulting saliency map
enabled higher performance with even sparser feature representations. Because
human observers during the eye-tracking experiment performed the same action
recognition task as the computer vision algorithms, it is reasonable to assume
that they looked at those image regions that are most informative for the task.
Because of human top-down knowledge, performance of the empirical saliency
map cannot be compared directly; however, these data are useful to probe the
limits of saliency-guided descriptor pruning and, ultimately, the limits of the
state-of-the-art algorithms. The eye tracking data from these experiments are
publicly available.1

Finally, we combine the pruned saliency-based representations described
above with the original, unpruned representations, via feature concatenation and
Multiple Kernel Learning blending. This step is motivated by the observation
that humans often rely on low-resolution, full-field “gist” information in addition
to high-resolution information at the center of gaze. Such blending yields even
better performance, at the expense of somewhat higher computational cost.

For alternative work, published in this conference, on eye movement data
collection and saliency models for action recognition see [15].

2 Salience-Based Masking of Descriptors

Here, we investigate how much action recognition models benefit from an at-
tentional filtering phase incorporated in the standard Bag of Features architec-
ture [4]. This architecture treats each video sample as an orderless collection
of local descriptors that are extracted either at regular grid points or at space-
time interest points. Next, the descriptors are quantized into codebook-frequency
histograms according to a pre-learned dictionary. The dictionary is derived by
clustering the descriptors of training video samples into fewer codebook vectors
(usually with k-means). Finally, a non-linear Support Vector Machine with a χ2

kernel is trained on the codebook-frequency histograms and is used to classify
human actions.

2.1 Action Recognition Algorithms

An attentional masking stage is incorporated into three state-of-the-art action
recognition algorithms that employ a common processing pipeline (based on the
BoF framework) described by Wang et al. [1]. All three models sample their
descriptors densely and differ only in the feature extraction stage.

1 http://www.coxlab.org/resources/hw2_eye_movement/

http://www.coxlab.org/resources/hw2_eye_movement/
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When combined with dense sampling, (1) HOGHOF [16] descriptors provide
good results on a variety of action recognition benchmarks [1]. HOGHOF char-
acterizes both static appearance (through Histograms of Oriented Gradients)
and motion properties (with Histograms of Optical Flow).

The algorithm of Wang et al. [2], dubbed (2) Dense Trajectories, extracts
several different descriptors along trajectories of densely sampled interest points.
Optical flow fields are used to extract the dense trajectories, and each trajectory
is described by four types of descriptors: the shape of the trajectory, HOG, HOF,
and Motion Boundary Histograms (MBH).

Many existing algorithms for object and action recognition rely on manually-
designed features such as those mentioned above. More recently, unsupervised
feature learning has been shown to deliver highly competitive results in various
computer vision tasks (e.g. [17]). For action recognition, Le et al. [3] introduced a
two-layered Independent Subspace Analysis (ISA) algorithm— the (3) Stacked
Convolutional ISA — that learns spatiotemporal features of interest points
from unlabeled videos. Deep learning techniques, such as convolution and stack-
ing, were employed to scale the algorithm to large images and learn hierarchical
representations.

2.2 Saliency Masks

We here investigate three different saliency models of varying biological plausi-
bility, and further investigate three deliberately unbiological control models.

Central Masking. Filmmakers often place the subject of interest in the center
of the video (e.g. [18,19]). Therefore, a simple — but surprisingly highly predic-
tive — saliency map is one that considers merely the spatial distance of each
pixel to the video center.

Analytical Saliency Mask. To compute an analytical saliency mask, we con-
sider a simple but powerful model built on the structure tensor and its geometric
invariants. The structure tensor has been used extensively in image processing
e.g. for interest point detection (Harris detector [5]), motion and orientation es-
timation [20], and occlusion detection. For a video viewed as a function of space
(x and y) and time t (f : R3 → R), the structure tensor is defined as

J =

∫
Ω

⎡
⎣ f2

x fxfy fxft
fxfy f2

y fyft
fxft fyft f2

t

⎤
⎦ dΩ , (1)

where the integral over Ω can be implemented as a spatiotemporal Gaussian
smoothing function and fi stand for the first order partial derivatives.

Recently, J’s geometric invariants have been shown to predict well visual
saliency and eye movements on videos [9]. With the help of the invariants one
can characterize typical video structures in terms of the intrinsic dimensionality
of the local video signal. The invariants are defined as
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H = 1/3 trace(J)
S = M11 +M22 +M33

K = |J|
(2)

where Mij are minors of J. We here only consider the invariant S, which encodes
transient edges and corners and stationary corners; S has been shown to predict
human gaze better than H , and is less sparse than K [9]. Since we are more
interested in relevant regions, rather than (the only few) interest points, pooling
(with Ω) is done over a large spatiotemporal neighborhood.

Empirical Saliency Mask. While analytical saliency maps (derived from low-
level image properties) have proven useful for predicting relevant scene regions
(e.g. [7,8,9]), a “ground truth” saliency map for a given video can be determined
by measuring where human observers actually look in the video. To create such
a map, eye trackers are usually employed to collect eye movements of human
viewers. When dealing with gaze data, one needs to compensate for possible
imprecisions in both the eye tracking and the human visual system. Also, eyes
are typically directed at particular regions of interest, not at single points. In
vision science, fixation density maps [21] have been proposed as means to convert
the raw fixation data into an empirical saliency map. A fixation density map is
constructed by the superposition of spatiotemporal Gaussians centered at each
gaze sample of all subjects, normalized to a probability density map in which
regions of interest of human observers have higher probabilities.

Peripheral Masking. Capturing rich contextual information is one of the ben-
efits of the BoF video representation. However, encoding irrelevant descriptors
can also add noise and thus degrade recognition performance. Under the as-
sumption that Hollywood directors put objects of interest roughly in the center
of the screen, we created a control condition by inverting the central mask, thus
preserving descriptors only from the periphery.

Random Uniform Sampling. To test whether performance can be preserved
with significantly fewer descriptors sampled uniformly from the whole scene
rather than locally at salient locations, we picked descriptors from the dense
sampling grid at random.

Randomly-Offset Empirical Saliency Mask. As a third control condition,
we introduced random spatial offsets of the empirical saliency map for each movie
sample (with 2D toroidal wrapping around the borders). Such randomly-offset
empirical saliency maps simulate random gaze patterns: instead of uniformly
sampling from the whole scene, only small patches are sampled densely. This
condition preserves the rough spatiotemporal statistics of human eye movements,
while disrupting their relationship with the content of the movies.
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2.3 Descriptor Pruning

In this paper, we extend the standard BoF pipeline to allow for an attentional
filtering of the irrelevant scene regions. Once descriptors are extracted on a dense
grid, we prune the descriptor set based on one of the above saliency masks of
the underlying video.

To this end, we sample descriptors with a probability given by the cumulative
distribution function (CDF) of the Weibull distribution

F (x; k, λ) = 1− e−(x/λ)k , (3)

where x ∈ [0, 1] is the raw saliency value, and k > 0 and λ > 0 are the shape
and scale parameters of the Weibull function. The coverage of the mask can be
increased or decreased by varying the parameter λ. We use the Weibull distri-
bution because its parameters can flexibly modify the probability with which
descriptors are sampled from video regions of different saliency (as opposed to
only thresholding the saliency map).

2.4 Feature Combination

As mentioned earlier, one disadvantage of extracting descriptors only at salient
locations is the possible loss of contextual information. We therefore also investi-
gate the effect of not pruning, but complementing the original, densely extracted
BoF representations with saliency-based descriptor sets. Feature combination is
performed in two ways:

1. An extended BoF representation is generated by concatenating the two
codebook-frequency histograms. A standard SVM with χ2 kernel operates
on these new feature vectors of doubled dimensionality.

2. Adaptive feature combination is performed with Multiple Kernel Learning
(MKL) techniques [22,23]. MKL optimizes jointly over a linear combination

of Q kernels K∗ =
∑Q

q=1 βqKq and the SVM parameters α ∈ R
n and b ∈

R. In our case Q = 2, i.e. separate χ2 kernels are assigned to the BoF
representations derived from densely sampled and saliency-filtered descriptor
sets.

3 Experimental Setup

3.1 Data Set

To comply with the common evaluation scheme of the three considered mod-
els, we evaluate the proposed pruning methods on the challenging Hollywood2
benchmark [14]. For this action recognition set, almost 6 hours of video data
were collected from 69 different Hollywood movies and split into 823 training
and 884 test video clips. The set contains 12 actions and video clips may have
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Fig. 1. Example screenshot of five (out of six) different masks used to prune the densely
sampled descriptor set. From left to right, top row: unmasked (“sit up” action), center
mask, empirical saliency mask (fixation density map based on eye traces of three view-
ers), bottom row: analytical saliency mask (invariant S), peripheral mask, and offset
empirical saliency mask. Not shown is a random sampling of descriptors. For video
examples, see supplementary material.

multiple labels. Hollywood2 captures well the many challenges in action recog-
nition: it is characterized by high intra-class variability, high degree of clutter
and camera motion, and clips are often ambiguously labeled.

Binocular eye movements were recorded on this video set at 1000Hz from
three subjects using a commercially available video-oculographic eye tracker (SR
Research EyeLink 1000). Subjects were seated 75 cm away from a ViewSonic
VX2265wm TFT monitor running at 120Hz, and their heads were stabilized in
a head rest. At this distance, the entire screen with a spatial resolution of 1680
by 1050 pixels spanned 35 by 22 degrees of visual angle; videos were scaled to
cover the full screen (in “letterbox” format where necessary). At the beginning
of each recording session, the eye tracker was calibrated with the manufacturer’s
five-point calibration routine. Then, gaze was recorded while video clips were
shown in random order. Typical recording sessions lasted about 15 to 20 minutes;
regular drift corrections are not necessary with this eye tracker, as was validated
in previous experiments. Subjects were familiar with the action classes, and their
task was to ‘identify the action(s)’.

3.2 Implementation

Executables that are available online and default toolbox parameters were used
to obtain HOGHOF and Dense Trajectory (DT) descriptors. In case of the
Stacked ISA model, for the full analysis (including codebook generation, SVM
evaluation, etc.), we used the original implementation and default parameter
settings. For a full listing of parameters also for invariant S, see supplementary
material. Examples of the different masks, overlaid on individual video frames,
are rendered in Fig. 1. For the evaluation, we also strictly followed the processing
pipeline of Wang et al. [1].

4 Experimental Results

For all three action recognition models, we systematically investigated how the
various masks and different mask sizes affect action recognition performance on
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Table 1. Best mean Average Precision on Hollywood2 for the three state-of-the-art
action recognition algorithms and the different masks (used either exclusively or to
emphasize relevant regions)

HOGHOF Dense Trajectories Stacked ISA

literature 47.7% 58.3% 53.3%

baseline (reproduced) 50.3% 57.9% 52.3%

central mask 52.3% 60.0% 54.2%

peripheral mask 48.2% 57.2% 52.7%

analytical saliency 52.1% 59.4% 54.4%

random sampling 51.0% 58.0% 52.9%

empirical saliency 54.5% 61.9% 55.2%

offset emp. saliency 50.8% 57.4% 52.6%

the Hollywood2 benchmark. By varying the value of the Weibull scale parame-
ter λ, we gradually increased mask coverage from retaining as little as 10-20%
of descriptors to preserving all 100%, which corresponds to the baseline (repro-
duced) performance. Our results are summarised in Table 1. As we shall see
below, several interesting patterns clearly emerge from this analysis.

Central and Peripheral Masking. Recognition performance for central and
peripheral masking is shown in Fig. 2. There, we plot the mean Average Precision
(mAP, i.e. the mean of the AP of 12 binary classifiers) for various mask sizes
(blue curves). Whereas a central mask (top row) achieves baseline performance
— dashed horizontal line — with as little as 30-40% of the descriptors, peripheral
masking drastically deteriorates recognition (blue curves below the dashed line in
bottom row of Fig. 2). Moreover, a more modest filtering of the descriptors with
the central mask leads to substantially better recognition than that obtained
with the unpruned descriptor set (see blue peaks in the upper row of Fig. 2).
These observations are highly consistent among the three models; note, however,
the different mAP ranges along the vertical axis due to the different predictive
power of the models. With 58.3% mAP reported, Dense Trajectories is, to our
knowledge, the best performing algorithm in the literature, and our reproduced
baseline (57.9% mAP) comes close to this value. However, with only about 70%
of the Dense Trajectories descriptors preserved with a central mask, we obtain
60.0% mAP and thus outperform all previously published results. The good
performance of a simple center mask on Hollywood2 can be explained by the
filmmaker’s bias to place actors and objects of interest near the center of the
video.

Next, we examine the effect of complementing the BoF representations ob-
tained for full descriptor sets with the ones of the pruned sets. Feature combina-
tion turns out to be beneficial: both simple descriptor concatenation (red lines)
and MKL (green lines) deliver improved performance compared to the “mask
only” condition (blue line). There are, however, three additional interesting pat-
terns. First, the improvement is more prominent with an “aggressive” selection
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(e) Dense Trajectories
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(f) Stacked ISA

Fig. 2. Mean Average Precision for three action recognition models (dashed horizontal
lines show reproduced results — without masking — as baseline) when descriptors are
pruned either with a central (top row) or peripheral (bottom row) mask of systemati-
cally varied size. For all models, using only central descriptors (blue line, top) improves
performance (up to a mAP of 60%), while peripheral descriptors (blue line, bottom)
impair performance. When unpruned and saliency-based descriptor sets are combined
(red lines - concatenation, green lines - multiple kernel learning), results get robustly
better for central and less impaired for peripheral masking

of descriptors, and decreases as the mask coverage increases, i.e. the codebooks
of the unmasked and pruned sets become more similar. Second, even with fea-
ture combination, peripheral masking is still inferior to the baseline, indicating
that the irrelevant peripheral descriptors only add noise to the classifier. Third,
training a single SVM on the concatenated codebook-histogram representations
derived from unpruned and masked descriptor sets performs slightly better than
MKL.

Note that compared to our 50.3% baseline, a lower mAP of 47.7% was re-
ported for HOGHOF in the literature [1]. The improvement is the result of sep-
arate codebook generation for HOG and HOF descriptors, as suggested by [2].
Error bars for Stacked ISA are based on three runs automatically performed
by the authors’ toolbox. For the other two models it would be computationally
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(f) Stacked ISA

Fig. 3. Results for masking with an analytical saliency map (geometric invariant S; top
row) and for various random subsampling factors (bottom row). While a small number
(30-40%) of randomly picked descriptors is enough to maintain baseline level (dashed
line), recognition can be improved by a more moderate pruning based on saliency.

prohibitive to run the full analysis multiple times. In previous studies [1], a
standard deviation of about 0.5% was reported.

Analytical Saliency Mask. Results for masking with invariant S are shown
in the upper row of Fig. 3. Note that temporal border effects reduce the number
of all descriptors to around 65% in case of HOGHOF, hence the lack of results
in the right half of the HOGHOF figures.

Based on S, recognition is improved beyond the baseline using fewer descrip-
tors, but — surprisingly — not beyond what we obtain with a simple cen-
tral mask. Low-level feature-based analytical saliency algorithms, however, only
model bottom-up attentional processes and therefore cannot capture semantic
information, which in Hollywood movies typically is found in the video center.

Random Uniform Sampling. We find that randomly discarding up to 60-
70% of densely sampled descriptors does not substantially impair baseline per-
formance (Fig. 3, bottom row). Given that descriptors are extracted from a



94 E. Vig, M. Dorr, and D. Cox

20 40 60 80 100

46

47

48

49

50

51

52

53

54

55

m
ea

n 
A

ve
ra

ge
 P

re
ci

si
on

% descriptors kept

 

 

gaze
gaze MKL
gaze concat

(a) HOGHOF

20 40 60 80 100
53

54

55

56

57

58

59

60

61

62

m
ea

n 
A

ve
ra

ge
 P

re
ci

si
on

% descriptors kept

 

 

gaze
gaze MKL
gaze concat

(b) Dense Trajectories

20 40 60 80 100

48

49

50

51

52

53

54

55

56

57

m
ea

n 
A

ve
ra

ge
 P

re
ci

si
on

% descriptors kept

 

 

gaze
gaze MKL
gaze concat

(c) Stacked ISA

20 40 60 80 100

46

47

48

49

50

51

52

53

54

55

m
ea

n 
A

ve
ra

ge
 P

re
ci

si
on

% descriptors kept

 

 
offset gaze
offset gaze MKL
offset gaze concat

(d) HOGHOF

20 40 60 80 100
53

54

55

56

57

58

59

60

61

62

m
ea

n 
A

ve
ra

ge
 P

re
ci

si
on

% descriptors kept

 

 
offset gaze
offset gaze MKL
offset gaze concat

(e) Dense Trajectories
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(f) Stacked ISA

Fig. 4. Mean Average Precision when masking with an empirical saliency mask (top
row) and the randomly offset version of it (bottom row). 20-40% of descriptors picked
from the empirical saliency map give optimal results (blue curve peaks), and when
combined with baseline features the highest performance boost is obtained. Randomly
offset gaze masks, on the other hand, degrade recognition performance.

dense grid independently on several spatiotemporal scales, a random global sub-
sampling will probably still include most regions of the video. Still, given that
the three algorithms were optimized separately for grid density, this result is
nevertheless striking.

Empirical Saliency Mask. Fig. 4 shows results for the empirical saliency
mask and its randomly offset version. Highest recognition is obtained with only
20-40% of the descriptors, based on regions that human observers looked at while
they performed the action recognition task. When concatenated to the baseline,
the performance boost is even more pronounced: it adds up to 4%, which for
Dense Trajectories leads to a mAP of about 62%. Offsetting the saliency maps
corresponds to densely sampling from quasi-random regions with a random scan-
path. Similar to peripheral masking, such a descriptor selection is detrimental
to recognition performance.
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Fig. 5.Distribution of gaze on the Hollywood2 training and test videos. The normalized
probability map is the result of the superposition of Gaussians at each gaze sample (of
three viewers) and subsequent normalization. Eye movements on professionally-edited
Hollywood movies are highly centered.

To further investigate the central bias in the Hollywood2 video set, in Fig. 5,
we plotted the average empirical saliency map from all 1707 movie clips. Our
results reinforce previous findings in the vision literature (e.g. [19,24,18]): eye
movements on professionally-captured and edited Hollywood videos are highly
centered. In addition to the cinematographer’s bias for placing salient content
near the center of the frame, frequent scene cuts were also found to trigger
reorienting eye movements towards the center of the screen.

Saliency-Based Pruning vs. Saliency-Based Weighting. There is consid-
erable across-run variability in the models induced by random subset selection
and k-means initialization. However, it would be too time-consuming to run mod-
els repeatedly in order to evaluate whether, for any given number of descriptors,
results are better for the saliency-based descriptors alone or a combination of all
and salient descriptors through concatenation or multiple kernel learning. Over
all models and mask types, feature vector concatenation (red curves) yields sig-
nificantly higher performance than pruned descriptor sets based on saliency (blue
curves; paired Wilcoxon signed rank test, 84 tuples, p < 10−15).

5 Discussion and Conclusions

Despite rapid progress in computer vision algorithms, human performance is
still unrivaled for scene understanding and complex action recognition. The hu-
man visual system uses visual attention to separate task-relevant from irrele-
vant regions, which greatly reduces computational demands. Earlier computer
vision attempts to mimic this efficient strategy have limited processing to a
small number of interest points; recently, however, dense sampling approaches
have achieved better recognition performance albeit at much higher computa-
tional cost. In this paper, we reconcile these paradigms. We use several saliency
models and state-of-the-art action recognition algorithms to investigate how per-
formance is affected when either uninformative regions are discarded or salient
regions are represented in more detail. Our findings were highly similar for the
different recognition algorithms and confirmed that a large amount of densely
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extracted descriptors is indeed unnecessary and may be even harmful for action
recognition. Using only relevant descriptors is particularly critical on vast data
sets such as Hollywood2 on which, with the optimal Dense Trajectories model [2]
about 200GB of descriptor data are extracted. The manipulation of such huge
amounts of data is time-consuming even on large computing clusters.

Performance can be maintained with as little as 30% of descriptors picked at
random, which is similar to using a sparser regular grid [1]. With a less aggres-
sive, saliency-guided selection of the descriptors, however, recognition perfor-
mance increased, even beyond the best results reported for this data set before.
Nevertheless, the risk remains that image feature-based saliency algorithms may
fail to identify all task-relevant, semantically meaningful image regions. To probe
the limits of saliency-guided descriptor pruning, we therefore collected eye move-
ments from human observers on the Hollywood2 videos and make this data set
publicly available here. Although not a “fair” comparison, such a “ground truth”
saliency map is nonetheless interesting and indeed turned out to be a superior
pruning mask.

Probing the abilities of action recognition algorithms is only possible with
large and challenging video sets. However, using readily available, professionally-
made videos as in Hollywood2 is likely to have introduced a number of biases into
the data set. Directors deliberately place the action in the center of the video,
and thus a simple central mask provided surprisingly competitive performance.
We expect that this effect would vanish in videos that lack such guided “fram-
ing,” such as those acquired by surveillance cameras or autonomously navigating
robots.

Finally, scene context may still provide additional information. Performance
significantly increased when the saliency-based representations complemented
the original, unpruned ones. Salient, task-relevant scene areas were represented
by more codebook vectors and thus emphasized. In biological terms, such fea-
ture combination could be interpreted as having separate representations for the
coarse scene gist and a detailed, foveal view of a scene.
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