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Abstract— In this paper we present a novel, condition-

invariant place recognition algorithm inspired by recent 
discoveries in human visual neuroscience. The algorithm 
combines intolerant but fast low resolution whole image 
matching with highly tolerant, sub-image patch matching 
processes. The approach does not require prior training and 
works on single images, alleviating the need for either a velocity 
signal or image sequence, differentiating it from current state 
of the art methods. We conduct an exhaustive set of 
experiments evaluating the relationship between place 
recognition performance and computational resources using 
part of the challenging Alderley sunny day – rainy night 
dataset, which has only been previously solved by integrating 
over 320 frame long image sequences. We achieve recall rates 
of up to 51% at 100% precision, matching places that have 
undergone drastic perceptual change while rejecting match 
hypotheses between highly aliased images of different places. 
Human trials demonstrate the performance is approaching 
human capability. The results provide a new benchmark for 
single image, condition-invariant place recognition.  

I. INTRODUCTION 
Visual sensors offer many advantages over traditional 

robotic mapping sensors, including low cost, small size, 
passive sensing and low power consumption. A large number 
of vision-based mapping systems have been developed over 
the past ten years, including FAB-MAP [1], MonoSLAM [2], 
FrameSLAM [3], V-GPS [4], Mini-SLAM [5], SeqSLAM [6, 
7] amongst many others [8-13]. Yet as robots are tested over 
longer and longer time periods in real world environments, it 
is becoming clear that perceptual change, caused by factors 
such as  day-night cycles, varying weather conditions and 
seasonal change, remains a significant challenge for vision-
based methods. Current vision-based approaches to the 
problem are limited by one or more significant restrictions 
such as requiring hand-picked training data [14, 15], camera 
motion information, or long image sequences [7]. 

In this paper, we present a novel multi-step vision-based 
place recognition system inspired by the human visual 
processing pathway, and specifically the simultaneous 
increase in both matching selectivity and tolerance or 
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invariance along the pathway [16]. We extend this concept to 
the domain of place recognition, by implementing an initial 
low resolution, low tolerance whole image matcher followed 
by a higher resolution, highly tolerant patch matching stage 
(Fig. 1c). We demonstrate the method achieving recall rates 
of up to 51% at 100% precision on the sunny day-rainy night 
Alderley dataset [7], creating a new benchmark  in condition-
invariant place recognition (Fig. 1). The approach is able to 
match very perceptually different images of the same place 
(Fig. 1a) while rejecting proposed matches between highly 
aliased images of different places (Fig. 1b). Finally we 
present a pilot human study that reveals algorithm 
performance is comparable to human performance. 

 
Figure 1: With no prior training, motion information or temporal 
filtering, the top-down, multi-stage place recognition algorithm 
presented here is able to perform instantaneous place recognition 
between (a) very perceptually different images while also rejecting (b) 
incorrect matches between aliased image pairs. The method uses a 
global whole image comparison stage followed by a (c) highly 
tolerant, patch-based comparison method. 

Our primary focus in this paper is the condition 
invariance problem and not the pose invariance problem, 
which has been extensively addressed in less challenging 
environmental conditions [1-3, 17], typically using feature-
based techniques such as SIFT [18] or SURF [19]. In the 
Discussion we detail possible methods for combining the 
pose invariance of current feature-based approaches with the 
methods presented here. The work presented here builds on 
an offline only pilot study implemented in [20]. We present 
the following new contributions: a new, parallelized and real-
time capable implementation that scales to available compute 
and enables a 250% improvement in place recognition 
performance, human versus machine place recognition trials, 
and an extensive characterization of the relationship between 
place recognition performance and compute that provides an 
indication of the upper bounds on performance were 
unlimited compute available. 
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The paper proceeds as follows. In Section II we briefly 
review vision-based place recognition and mapping 
algorithms and recent attempts to improve their robustness to 
environmental change. Section III describes the approach 
taken in this paper. In Section IV we describe the 
experimental setup, with results presented in Section V. The 
paper concludes in Section VI with discussion including 
future research areas. 

II. BACKGROUND 
Current vision-only mapping and place recognition 

techniques address the problem of perceptual change by 
either learning how the environment’s appearance changes 
using training data, forming place recognition hypotheses 
over long sequences of images, or relying on “condition-
invariant” features. 

Learning how the appearance of the environment changes 
generally requires training data with known frame 
correspondences. [14] builds a database of observed features 
over the course of a day and night. [15] presents an approach 
that learns systematic scene changes in order to improve 
performance on a seasonal change dataset. Beyond the 
limitation of requiring training data, the generality of these 
methods is also currently unknown; these methods have only 
been demonstrated to work in the same environment and on 
the same or very similar types of environmental change to 
that encountered in the training datasets. 

Many probabilistic SLAM methods such as particle filter-
based approaches build up place recognition hypotheses over 
time. Similarly, by explicitly matching sequences rather than 
individual frames, an image matcher must only report 
matches that are generally better than chance performance, 
rather than globally correct [7]. The SeqSLAM [7, 14, 15, 21] 
system established the current benchmark on the dataset used 
in this paper, but required very long sequences (320 frames) 
and constant camera velocities (or in the case of [14] a 
motion model), limiting its general applicability.  

Lastly, SIFT [18], SURF [19] and a number of 
subsequent feature detectors have been demonstrated to 
display a significant degree of pose invariance but only a 
limited degree of condition-invariance (illumination, 
atmospheric conditions, shadows, seasons). Perceptual 
change as drastic as that shown in Fig. 1 has been shown to 
be challenging for conventional feature detectors [7, 22]. In 
this paper, we attempt to fill the capability gap between these 
methods by providing a training-free method that matches 
single images and does not require velocity information. 

III. APPROACH 
This section describes the place recognition components, 

overviewed in Fig. 2.  

A camera image is compared to all stored images, first at 
a whole image matching stage, then at a patch matching 
stage, with the output evaluated using a patch shift coherency 
calculation. The computationally intensive patch verification 
stage is parallelized and can be distributed amongst any 
number of processing units. 

 
Figure 2: System architecture. A camera image is compared to stored 
images firstly at a whole image level, then at a patch-based level in a 
parallelized manner and finally at a patch-shift coherence level. 

A. Whole Image Place Recognition 

The whole image comparison method is similar to 
previously used methods [23], so we provide only a brief 
overview here. Camera images are resolution reduced (64×32 
pixels) then patch normalized. Patch normalized pixel 
intensities, I', are given by: 
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where ȝxy and ıxy are the mean and standard deviation of pixel 
values in the patch of size Psize that (x, y) is located within. 
Mean image differences between the current image and all 
stored images are calculated using a normalized sum of 
absolute intensity differences, performed over a range of 
horizontal and vertical offsets: 
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where ı is the range of shift offsets, and g( ) is given by: 
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where s is the area in pixels of the template sub frame and pi 
and pj are the two images. The range of horizontal and 
vertical offsets provides some invariance to camera pose [6]. 

In this implementation, we simply add new images to the 
library of stored images at a fixed rate (1 every 2 frames, 
corresponding to a maximum inter-frame separation of 1.1 
metres for the presented dataset. 

B. Cohort-based Normalization 

The vector of difference scores output by Equation 2 is 
normalized twice. Firstly, the difference score matches 
between the current camera frame and all stored frames are 
normalized as follows: 
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where Di is the original difference score for the match 
between the current frame and the ith frame. 

The second normalization is based on the standard 
speaker recognition and computer vision technique of 
normalizing scores by cohort [24-26]. We use a modified 
version that uses video frame time-stamps to normalize 
different scores by time. Datasets are “chunked” into r 
temporally contiguous frame groups. Each difference score D 
is then normalized as follows: 



  

 j

jij
ij

D
D

V
D�

 ˆ  (5) 

where Dij is the ith difference score within the jth dataset 
chunk. As a point of clarification, cohort normalization only 
uses past camera frames so the method is real-time capable – 
future frame information is not used. 

Finally, to stop the system matching the current frame to 
the immediately preceding frame, we truncate cohort 
normalization and place matching l frames from the current 
frame. In a full SLAM system, this same outcome would be 
achieved using odometry and a particle cloud; in our place 
recognition-only system, the implication is that the system is 
unable to close very small loops. 

C. Sub-Image Patch Verification 

Patch verification is performed on images from the Z top 
ranked place match hypotheses proposed by the whole image 
matcher described in the previous section. Computation is 
split evenly over the number of available processing units 
(Fig. 2), leading to (along with code optimization) more than 
two orders of magnitude improvement in compute speed over 
the pilot study [27]. 

Small image patches at corresponding locations in the 
two images (see Fig. 3) are compared using a sum of absolute 
differences calculation similar to that described in Equations 
2 and 3. Comparisons are performed over a sliding window 
centred on the patch location, but extending in both vertical 
and horizontal directions. We calculate a difference score 
ratio grat: 
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where g1 is the difference score for the best matching patch 
offset and g2 is the (larger) score for the next best matching 
offset located outside a range of rpeak from the first score. A 
count of patch matches with difference score ratios exceeding 
a minimum score requirement gm (value given in Table 1) 
produces an overall patch match count q: 
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Examples of patch matches meeting the quality 
requirements are shown in Section V. 

 
Figure 3: Patch verification involves comparing (a) small patches at 
(b) corresponding locations in a proposed pair of matching images 
over a local sliding window [-a, a]. 

D. Patch Shift Coherency 

To further evaluate the place match likelihood, a 
coherency check is performed on the reported shift offsets for 
the q matching patches meeting the quality requirement set in 
the previous section. The horizontal and vertical shifts are 
binned in a two-dimensional histogram H which is then 
smoothed using a moving summation window of radius srng 
(see Fig. 4). The peak shift count c: 
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provides an absolute measure of the number of spatially 
coherent patch matches. Precision recall curves are generated 
by sweeping over a range of threshold values of c over which 
a match is considered confirmed. 

 
Figure 4: (a) Patch shift coherency verification involves creating a 2D 
histogram of the spatial shifts for patch matches, from which a 
coherency metric is calculated. 

IV. EXPERIMENTAL SETUP 
This section describes the experimental environment, 

dataset acquisition and pre-processing, ground truth creation 
and key parameter values. All processing was performed on a 
Core i7-2620M 2.7 GHz laptop, running four parallel 
processing streams for the patch verification stage. 

A. Camera Equipment 

A Panasonic Lumix DMC-TZ7 digital snapshot camera 
was mounted forward facing on the car dashboard, recording 
720p video at a frame rate of 25 frames per second, which 
was cropped to remove the dashboard. The resulting video 
stream had significant and constant visual artifacts due to 
water streaming down the windscreen, windscreen wipers, 
compression artefacts and poor night-time illumination. 

B. Alderley Dataset 

The Alderley dataset comprises two 8 km journeys over 
the same route through the suburb of Alderley in Brisbane, 
Australia (Fig. 5). The first run was gathered in the middle of 
the night during a severe storm with very heavy rain and low 
visibility. The second run was gathered during a bright clear 
morning. The car’s velocity was typically between 45 and 60 
km/hr throughout the dataset except when slowing down to 
stop due to traffic. 

C. Ground Truth 

Videos were manually parsed frame by frame to pick key 
frame correspondences. Points were selected based on video 
frames that showed prominent, unambiguous features and 
were more densely sampled around transition points (such as 
the car stopping and starting at traffic lights). 93 locations 



  

were tagged in the two Alderley datasets. The manually 
selected frame pairs can be considered correct to within 5 
frames in the original 25 fps video, corresponding to a 
maximum ground truth error (at 60 km/hr) of approximately 
3 metres. All precision-recall curves were generated with a 
false positive distance threshold of 13 metres, which is a third 
of the 40 metre distance used in the original SeqSLAM study. 

 
Figure 5: Aerial photo and camera path for the Alderley dataset. An 
8 km long route was traversed twice, once during sunny day-time 
conditions and once during heavy rain at night. Copyright Nearmaps. 

D. Image Pre-Processing 

Image brightening and contrast enhancement was 
performed by exploiting the 12 bits of intensity information 
stored in YV12 video output by many consumer cameras 
including the one used here. Enhanced images were then 
down sampled to the resolutions required by each place 
recognition module and then patch normalized. A simple no-
motion detector (based on image change) was used to pause 
processing at extended stoppages at traffic lights, as in the 
original SeqSLAM study.  

E. Parameter Values 

Parameter values are given in Table I. These parameters 
have been heuristically determined over a range of 
development datasets.  

TABLE I 
PARAMETER LIST 

Parameter Value Description 

Rx,Ry 64,32 Whole image matching resolution 

Rx,Ry 320,130 Patch-normalized image resolution for patch 
verification 

Psize 8 Patch-normalization radius 

fjump 
2 frames 

(1.1 metres max) Frame learning rate  

Z 1-1000 top 
matches 

Number of place match hypotheses evaluated 
by the patch verification process 

w 40×40 pixels Patch size for patch verification
a 5 pixels Patch verification local search range radius

rpeak 2 pixels Patch quality score peak search exclusion zone

gm 1.04325 Minimum difference score ratio for an 
accepted patch match 

l 75 frames Recently visited place matching exclusion 
zone 

Srng 1 pixel Sliding summation window radius for patch 
shift histogram 

F. Human versus Machine Trial 

From the full dataset, a selection of 200 pairs of frames 
were chosen such that they were evenly distributed between 

correct and incorrect matches and day-night/night-night pairs, 
making a total of four categories with 50 frame pairs in each. 
Half of the frames were selected to be particularly difficult 
due to perceptual aliasing and low image quality, and the 
other half were randomly selected evenly over the dataset. 

Eleven healthy participants gave informed written consent 
to the experimental procedures, as approved by The 
University of Queensland Human Research Ethics 
Committee, and in accordance with the Helsinki Declaration 
of 1975.  Six of the participants were male and five female. 
The participants’ ages ranged from 20 to 30 years (mean 
age=23.2, SD=3.0 years) and their education level varied 
from 15 to 22 years (mean=17.4, SD=2). Trials were 
performed by displaying an image pair on a screen for 5 
seconds and having the participant decide whether the images 
were the same or a different place. Participants were given a 
training phase of 8 images (not included in the main test set) 
to prepare for the timing of the experiment before being 
tested on all 200 frame pairs. The patch-verification stage of 
the algorithm was tested on the same 200 frames with 
varying values of c. 

V. RESULTS 
In this section we present precision-recall curves and 

ground truth plots, with comparison to both a whole image-
only approach and the SeqSLAM algorithm, and human trial 
results. We also present patch matches and patch shift 
coherency histograms for both accepted and rejected place 
matches that illustrate how the system works. A video 
accompaniment to this paper further demonstrates the 
methodology and results. 

A. Performance versus Number of Evaluated Hypotheses 

We conducted an exhaustive study of the relationship 
between place recognition performance and the number of 
place match hypotheses (output by the whole image matcher) 
considered at each place, from 1 to 1000. The maximum 
hypothesis count of 1000 corresponds to testing 
approximately only 15% of all possible place matches. Due 
to the significant computational demands of the study, it was 
performed on two 1000 frame subsets of the overall dataset. 
We selected subsets for which performance was similar to 
that on the overall dataset. Obviously as hypothesis counts 
increased, the approach deviated somewhat from the initial 
concept of having a low tolerance initial matching stage. 

Precision-recall curves for 1 to 1000 place hypotheses are 
shown in Fig. 6. Recall at all precision levels increases as the 
number of hypotheses considered for each place increases, 
but with diminishing returns. For example, increasing the 
number of evaluated hypotheses per place (and hence 
compute) by two orders of magnitude from 5 to 500 leads to 
an improvement in maximum recall of about 80%.  

Figure 7 shows the maximum recall performance at 100% 
precision for each number of hypotheses. Increasing the 
number of considered hypotheses from 1 to 50 leads to a 
tripling in recall at 100% precision, but performance gains 
diminish beyond that number. The maximum recall rate at 
100% precision is 51%, for the 500 hypothesis case. 
Performance at 100% precision is often sensitive to 
parameter variation, but it is clear that any number of 



  

hypotheses from 100 to 1000 results in 43-50% recall at 
100% precision. 

 
Figure 6: Precision-recall performance for varying hypothesis counts 
(labelled). Recall at all precision levels increases with diminishing 
returns as the number of place recognition hypotheses being evaluated 
increases. 

 
Figure 7: Maximum recall rate at 100% precision for varying numbers 
of evaluated place match hypotheses per place. The vertical dashed 
lines indicate the real-time achievable number of place match 
hypothesis evaluations that can be performed per second. For example 
if new places must be matched at 1 fps, each new place can be 
evaluated against 150 place match hypotheses in real-time. 

B. Place Recognition Distribution 

Figure 8 shows the distribution of patch-verified place 
recognition hypotheses (red hollow circles) for a precision 
level of 100% and recall rate of 51%. The small cyan dots 
indicate the 500 top ranking place match hypotheses after the 
initial whole image matching stage, with the solid dark blue 
line indicating ground truth. The power of the patch 
verification process is clearly shown – of the 500,000 place 
hypotheses considered, the system correctly chooses 510 
(1000 being perfect) without making any mistakes. From a 
practical navigation perspective, the matches have good 
coverage over the route – the longest segment without place 
matches measures approximately 44 metres (40 frames). 

C. Sample Place Matches 

Figures 9 and 10 show examples of two place match 
hypotheses output by the whole image matcher that were 

correctly accepted (Fig. 9) and rejected (Fig. 10) by the patch 
verification process. One of the more challenging successful 
place matches is shown in Fig. 9. Despite vastly different 
perceptual conditions the algorithm is able to find a large 
number of (highly tolerant) patch matches (Fig. 9e). The 
smoothed histogram of patch match shifts (Fig. 9f) is highly 
coherent with a peak matching score of 25.  

 
Figure 8: Ground truth plot at 100% precision and 51% recall. The 
patch verification stage confirms 510 correct matches and successfully 
rejects half a million incorrect match hypotheses. 

 
Figure 9: One of the more challenging place matches correctly 
identified by the system. (a-b) Original images. (c-d) Patch normalized 
images with black rectangles indicating the patch matches exceeding 
the quality threshold. (e) The smoothed 2D histogram of patch match 
shifts. The overall matching score for this image was 25. 

Figure 10 shows two perceptually similar images of 
different places that were matched by the initial whole image 
matcher. The patch verification process finds a moderate 
number of patch matches exceeding the minimum difference 
score ratio threshold, but the shift histogram is less coherent 
than in Fig. 9f, with a maximum matching score of only 11. 
Most incorrect match hypotheses had much lower matching 
scores than this one. 



  

 
Figure 10: Two visually similar but spatially separate places that were 
matched by the whole image matcher but then successfully rejected by 
the patch verification method. The matching score for this image pair 
was 11. This image pair was one of the most challenging to reject – 
most incorrect image pair candidates output by the whole image 
matcher resulted in much lower matching scores. 

D. Full Dataset Study 

Figure 11 shows the precision-recall curves with (solid 
blue line) and without (dashed red line, whole image only 
matching) patch verification for a 5 hypothesis count system 
(which ran faster than real-time when processing frames at 15 
fps) on the full (2 × 8 km) dataset. Although the maximum 
recall (21%) at 100% precision was lower than in the initial 
SeqSLAM study (35%), place match coverage over the 
environment was more even, with the longest segment 
without place matches measuring approximately 280 metres, 
versus 1400 metres in the original SeqSLAM result [7]. 

 
Figure 11: Precision-recall curves for the whole image matching-only 
and top-down matching method applied to the entire Alderley dataset 
using a 5 hypothesis count system. The patch verification step results 
in a significant improvement in precision-recall performance at all 
precision levels. Perhaps unsurprisingly given the nature of the dataset, 
single frame-based whole image matching is incapable of reaching 
100% precision at any recall level. 

E. Computational Efficiency 

The current algorithms are implemented in a mixture of 
optimized C and unoptimized Matlab code. For datasets such 
as the one presented here, the primary computational load is 
due to the patch verification process, rather than the whole 
image matching process (see [6] for a discussion of low 

resolution image matching compute growth). Running on a 
Core i7-2620M 2.7 GHz laptop over 4 parallel threads, the 
current implementation is capable of performing patch 
verification on approximately 150 place match candidates per 
second. Further computational speed-ups could likely be 
obtained through several means. Firstly, a hierarchical spatial 
pyramid approach would ensure only a fraction of promising 
image matches at each resolution were verified at a higher 
resolution. Secondly, identifying salient image regions 
through a bio-inspired saliency model may reduce compute 
without adversely affecting performance [28]. Finally, widely 
available GPU hardware offers the potential for further 
parallelization of compute and consequent speed ups. 

F. Human versus Machine Trial 

Figure 12 compares the performance of the eleven human 
participants over the 200 frame test to the algorithm. At its 
best operating point, the algorithm’s performance was 
comparable to human performance. 

 
Figure 12: Peak algorithm performance is comparable to human 
performance. Dashed lines indicate mean and standard deviation. 

VI. DISCUSSION AND FUTURE WORK 
In this paper we have presented a novel top-down, multi-

step visual place recognition system. The overall matching 
process is inspired by the increasingly selective and tolerant 
processing stream in the human brain; the low tolerance 
initial matching stage outputs a relatively small number of 
candidate match hypotheses, which are then verified or 
rejected by a highly tolerant patch-based matching method. 
Results on a challenging dataset demonstrate that the method 
is capable of producing comparable or superior performance 
to the current sequence-based state of the art algorithm, but 
without requiring sequences or prior training. The patch 
verification step reliably confirms correct matches output by 
the whole image matcher while detecting and removing false 
positive matches. The benefits of the multi-step top down 
approach were perhaps most clear in the 500 hypothesis 
count study, in which the system found 510 correct place 
match hypotheses out of a possible 1000 (51% recall at 100% 
precision) while rejecting half a million false positive 
matches. Near maximal performance is reached when 
evaluating a relatively small number of match hypotheses, 
supporting the concept of an initial low tolerance matching 
stage. In addition, the place recognition performance 
achieved here on this specific task is starting to be 



  

comparable to human performance, as shown by our pilot 
human study. 

We have focused almost entirely on the problem of 
condition invariance, which restricts the applicability of the 
current method to scenarios where camera poses tend to be 
repeatable such as car navigation systems and indoor 
robotics. To investigate the pose invariance problem, we will 
draw upon computer vision techniques such as deformable 
graphs to replace the current rigid grid over which patch 
verification is performed; this change will in turn likely 
require a more sophisticated patch shift coherency technique. 
At the whole image level, researchers have shown that place 
recognition degrades remarkably gracefully with pose change 
[29], especially with panoramic cameras. To leverage this 
property, the detected pose changes at the whole image level 
will need to be applied at the patch verification stage. 

The current system is purely a place learning and 
recognition system, and the rate of learning is fixed. 
Integrating it into an existing mapping framework such as 
RatSLAM [30] would provide mechanisms for bounding 
learning and producing a spatial map. Finally, it may be 
possible to achieve significant further performance 
improvements through the use of exhaustive hyper parameter 
searches [28] over parameters such as patch matching quality 
thresholds. We will develop a representative range of place 
recognition datasets and investigate such an approach using 
cluster computing. 

Using motion information, temporal filtering over image 
sequences and prior training are all well developed 
techniques that could be used to improve the performance of 
this method, at the cost of versatility. However, by attempting 
to push the boundaries of what can be achieved using just 
single images, it may be possible to reveal new insights into 
the problem that would otherwise be obscured by these 
additional processes. We hope that the strengths and 
weaknesses of the work presented here serve as a point of 
discussion for future research in this area. 
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