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Saliency Prediction — Current Trends

» saliency map: topographic map that assigns to each scene location a measure

of interestingness
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» current trends in saliency prediction:

» incrementally add more and more hand-tuned features to existing models,
e.g. face-, horizon-, text-, object detectors
» combine many good models

Motivation — Learn Features Automatically

» our approach:
» Is entirely automatic, data-driven
» performs a large-scale search for optimal features
» identifies those instances of a richly-parameterized bio-inspired model family
that successfully predict saliency
» automatically derives their optimal combinations

Model Architecture

Richly-parameterized multilayer model architecture:
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Standard set of operations in each layer [, [ € {1, 2, 3}:
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Automatic Hyper-Parameter Optimization

highly configurable architecture, but many hyperparameters to tune
perform an efficient search for best architecture(s)
hyperopt: “library for optimizing over awkward search spaces with

real-valued, discrete, and conditional dimensions” (Bergstra et al., ICML'13)

optimization algorithm used: Tree of Parzen Estimators

Feature Search Pipeline

performed on a subset of the MIT1003 data set (600 images)
two-stage search:

» search for individual L1, L2, L3 models (RGB and YUV input)

» search for ensembles of best individual models

Saliency Prediction Pipeline

Optimal blend of L1, L2, L3 features: Fixation map
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AUC scores:
Model RGB YUV
1 0.6744 0.6705
| 2 0.6737 0.7401
| 3 0.7207  0.7977
eDN 0.8227

eDN: ensemble of Deep Networks

Evaluation — Eye Movement Benchmarks

1. MIT1003: 1003 images, 15 viewers, many faces
2. Toronto: 120 images, 20 subjects, no faces

3. Nusef: 758 images (affective content), 75 viewers
4. MIT300: 300 images, 39 viewers (gaze data not public)

+ 4 metrics
(AUC, EMD,
similarity, NSS)

eDN saliency map

Large-Scale Optimization of Hierarchical Features
for Saliency Prediction in Natural Images
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- Results on 3 data sets with center bias
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Best of 23 models on MIT300 (2"¢ as of 29.05.2014):

Area under ROC* Similarity* Earth mover's
Model Name Link to code |lcurve (higher is better) distance*
(higher is better) 9 (lower is better)

Humans** code 0.922 1 0

Bio-inspired
hierarchical
features

Judd et al. code 0.811

(coming

soon) 0.8192

paper,
CovSal P, |lo.8ose

Tavakoli et al. paper and
2011 website

0.8033
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Conclusions

efficient search in a large pool of richly-parameterized neuromorphic models
automated blending of individual models — diversity, multiple scales

no assumptions on what features/objects attract attention — learn them
best performance on several benchmarks
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