Senior Applied Scientist
Amazon
vig_nora@yahoo.com
I am a senior computer vision scientist at Amazon, in Berlin, Germany. My research interests include saliency prediction, multi-object detection and tracking, and human action recognition, using deep learning techniques and the simulation of virtual worlds.
I received my PhD in Computer Vision from the University of Lübeck, Germany, for work on human gaze prediction and guidance in videos. In the following two years, I was a postdoctoral research fellow in the Computer and Biological Vision Lab of David Cox at the Center for Brain Science, Harvard University. During my Post-Doc, I was partly funded by a German Academic Exchange Service (DAAD) grant. From 2013 to 2016, I worked as a research scientist in the Computer Vision group at Xerox Research Centre Europe (now Naver Labs Europe), in Grenoble, France. Between 2016 and 2019, I was with the Remote Sensing Technology Institute of the German Aerospace Center (DLR) working on aerial computer vision, including human crowd analysis and the modeling of traffic participants for autonomous driving. Since Sept. 2019, I am a senior applied scientist at Amazon.
My Google Scholar profile.
Y. Hou, E. Vig, M. Donoser, L. Bazzani. Learning Attribute-driven Disentangled Representations for Interactive Fashion Retrieval. ICCV, 2021.[paper] [code]
S. M. Azimi, C. Henry, L. Sommer, A. Schumann, E. Vig. SkyScapes - Fine-Grained Semantic Understanding of Aerial Scenes. ICCV, 2019.[pdf]
S. M. Azimi, E. Vig, R. Bahmanyar, M. Körner, P. Reinartz. Towards Multi-class Object Detection in Unconstrained Remote Sensing Imagery. ACCV, 2018.[pdf]
C. de Souza, A. Gaidon, E. Vig, A. M. Lopez. Sympathy for the Details: Dense Trajectories and Hybrid Classification Architectures for Action Recognition. ECCV, 2016.[pdf]
S. Jetley, N. Murray, E. Vig. End-To-End Saliency Mapping via Probability Distribution Prediction. CVPR, 2016. (spotlight presentation)[pdf] [bibtex]
A. Gaidon, Q. Wang, Y. Cabon, E. Vig. Virtual Worlds as Proxy for Multi-Object Tracking Analysis. CVPR, 2016.[pdf] [bibtex] [dataset] [poster]
A. Gaidon, E. Vig. Online Domain Adaptation for Multi-Object Tracking. BMVC, 2015. (oral) [pdf] [bibtex]
E. Vig, M. Dorr, D. Cox. Large-Scale Optimization of Hierarchical Features for Saliency Prediction in Natural Images. CVPR, 2014. [pdf] [bibtex] [code] [poster]
M. Milford, W. Scheirer, E. Vig, A. Glover, O. Baumann, J. Mattingley, D. Cox. Condition-Invariant, Top-Down Visual Place Recognition. ICRA, 2014. [pdf] [bibtex]
M. Milford, E. Vig, W. Scheirer, D. Cox.
Vision‐based Simultaneous Localization and Mapping in Changing Outdoor Environments.
Journal of Field Robotics 31 (5), 780-802, 2014.
[pdf] [bibtex]
E. Vig, M. Dorr, D. Cox. Space-variant Descriptor Sampling for Action Recognition based on Saliency and Eye Movements. ECCV, 2012.[pdf] [bibtex] [dataset] [poster]
E. Vig, M. Dorr, T. Martinetz, E. Barth. Intrinsic Dimensionality Predicts the Saliency of Natural Dynamic Scenes. IEEE Transactions on Pattern Analysis and Machine Intelligence (T-PAMI) 34 (6), 1080-1091, 2012. [pdf] [bibtex]
E. Vig, M. Dorr, E. Barth. Efficient Visual Coding and the Predictability of Eye Movements on Natural Movies. Spatial Vision 22 (5), 397-408, 2009. [pdf] [bibtex]
Theme adapted from orderedlist/minimal.